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LETTER TO THE EDITOR

An orthogonal basis for theBN -type Calogero model
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Department of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo
153, Japan

Received 4 November 1996, in final form 30 May 1997

Abstract. We investigate algebraic structure for theBN -type Calogero model by using the
exchange-operator formalism. We show that the set of Jack polynomials whose arguments are
Dunkl-type operators provides an orthogonal basis.

1. Introduction

Among quantum integrable models in one dimension, Calogero–Sutherland-type models
have caught renewed interest owing to their relation to fractional statistics. An example of
such models is the Calogero model with harmonic potential [1, 2]

HA = 1

2

N∑
j=1

(
− ∂2

∂x2
j

+ x2
j

)
+
∑
j<k

β(β − 1)

(xj − xk)2 . (1)

The subscript‘A’ signifies that this Hamiltonian is invariant under the action of the
symmetric groupSN , i.e. theAN−1-type Weyl group. There also exist Calogero-type
models associated with other types of Weyl groups [3]. TheBN -invariant counterpart
of the Hamiltonian (1) is as follows [4, 5]:

HB = 1

2

N∑
j=1

{
− ∂2

∂x2
j

+ x2
j +

γ (γ − 1)

x2
j

}
+
∑
j<k

{
β(β − 1)

(xj − xk)2 +
β(β − 1)

(xj + xk)2
}
. (2)

We note that the model associated with theCN -type Weyl group is equivalent to theBN -
case, and theDN -type model is obtained by settingγ = 0. The ground-state wavefunction
for this model is [4, 5]

ψ
(B)

0 (x1, . . . , xN) =
∏
j<k

|x2
j − x2

k |β
N∏
j=1

|xj |γ
N∏
j=1

exp(−x2
j /2). (3)

Wavefunctions of the excited states are written as products ofψ
(B)

0 and some symmetric
polynomials. Baker and Forrester [6, 7] obtained an orthogonal basis of such polynomials
and named them ‘generalized Laguerre polynomials’. It should be noted that the properties
of such polynomials have also been studied by van Diejen [8]. In [6], the proof of the
orthogonality is based on the orthogonality of another set of polynomials which they
called ‘generalized Jacobi polynomials’. They obtained the orthogonality of the generalized
Laguerre polynomials via some limiting procedure.
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Here we make a kind of gauge transformation on the Hamiltonian:

H̃B = (φ(B)0 )−1 ◦HB ◦ φ(B)0

= 1

2

N∑
j=1

(
− ∂2

∂x2
j

+ x2
j −

2γ

xj

∂

∂xj

)
− β

∑
k 6=j

1

x2
j − x2

k

(
xj
∂

∂xj
− xk ∂

∂xk

)
(4)

whereφ(B)0 is defined by

φ
(B)

0 (x1, . . . , xN) =
∏
j<k

|x2
j − x2

k |β
N∏
j=1

|xj |γ . (5)

To construct eigenstates of̃HB , the exchange-operator formalism is also available [5].
One can construct an analogue of the creation operatorsA

†
j (for a definition, see (19)

later) and show that the wavefunctions of the formf ((A†1)
2, . . . , (A

†
N)

2)
∏N
j=1 exp(−x2

j /2)

become eigenstates of̃HB if f (x1, . . . , xN) are homogeneous polynomials. However this
naive choice of polynomial does not create orthogonal states. In a previous work [9], we
have shown that the set of Jack polynomials whose arguments are Dunkl-type operators
provides an orthogonal basis for theAN−1-type Calogero model. The aim of this paper is to
investigate theBN -case. We shall show that Jack polynomials also appear in theBN -case.

2. Dunkl operators and Jack polynomials

In this section, we briefly review the definition of the symmetric and non-symmetric Jack
polynomials. In a physical context, Jack polynomials appear as a polynomial part of the
wavefunctions for the Sutherland (1/ sin2-interaction) model.

We first introduce the Cherednik operators [10, 11]:

D̂
(A)
j = zj

∂

∂zj
+ β

∑
k(<j)

zk

zj − zk (1− sjk)+ β
∑
k(>j)

zj

zj − zk (1− sjk)+ β(j − 1) (6)

wheresjk are elements of the symmetric groupSN (theAN−1-type Weyl group). An element
sij acts on functions ofz1, . . . , zN as an operator which permutes argumentszi andzj . Since
the operatorŝD(A)

j commute with each other, they are diagonalized simultaneously by a
suitable choice of bases ofC[x1, . . . , xN ] [11, 12]. Such a basis is called thenon-symmetric
Jack polynomial. A non-symmetric Jack polynomialJ λw(x), labelled with the partition
λ = (λ1, . . . , λN) and the elementw ∈ SN , is characterized by the following properties
[11, 12]:

(i) J λw(x) = xλw +
∑

(µ,w′)<(λ,w) C
λµ

ww′x
µ

w′ ,

(ii) J λw(x) is a joint eigenfunction for the operatorŝD(A)
j ,

where we have used the notationxλw = x
λ1
w(1) · · · xλNw(N). To define the ordering(µ,w′) <

(λ,w), we use the dominance ordering<D for partitions [13], and the Bruhat ordering<B

for the elements ofSN [14]. We define the ordering as follows:

(µ,w′) < (λ,w)⇐⇒
{
(i) µ <D λ

(ii) if µ = λ thenw′ <B w.
(7)

We denote the eigenvalues of̂D(A)
j asεj (λ,w):

D̂
(A)
j J λw(x) = εj (λ,w)J λw(x). (8)
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The eigenvaluesεj (λ,w) are all obtained by permutating the components of the multiplet
{λN−j+1+ β(j − 1)}j=1,...,N .

Using the operator̂D(A)
j , we introduce the generating function of symmetric commuting

operators [11]:

1̂
(A)

S (u) =
N∏
j=1

(u+ D̂(A)
j ). (9)

Since1̂(A)

S (u) is symmetric inD̂j , symmetric eigenfunctions are obtained by symmetrizing
J λw(x), which are nothing but the Jack symmetric polynomialsJλ(x). Eigenvalues of
1̂
(A)

S (u) are then given by

1̂
(A)

S (u)Jλ(x) =
N∏
j=1

{u+ λN−j+1+ β(j − 1)}Jλ(x). (10)

We note that all the eigenvalues of1̂(A)

S (u) are distinct for generic values ofu.
We then introduce theBN -type Dunkl operators [5, 15]

D
(B)
j =

∂

∂xj
+ β

∑
k(6=j)

{
1− sjk
xj − xk +

1− tj tksjk
xj + xk

}
+ γ 1− tj

xj
(11)

wheresjk and tj are elements of theBN -type Weyl group. An elementsij acts the same
as in theAN−1-case andtj acts as a sign change, i.e. it replaces the coordinatexj by −xj .
Commutation relations of theBN -type Dunkl operators are

[D(B)
i ,D

(B)
j ] = 0 sijD

(B)
j = D(B)

i sij sijD
(B)
k = D(B)

k sij (k 6= i, j)
tjD

(B)
j = −D(B)

j tj tjD
(B)
k = D(B)

k tj (k 6= j)
[D(B)

i , xj ] = δij
(

1+ β
∑
k(6=j)

(sjk + tj tksjk)+ 2γ tj

)
− (1− δij )β(sij − ti tj sij ). (12)

We denote the algebra generated by the elementsxj , D
(B)
j , sij andtj asA(B)S . We introduce

anA(B)S -moduleF (B)S (‘Fock space’ forA(B)S ) generated by the vacuum vector|0〉S = 1:

F (B)S = C[x2
1, . . . , x

2
N ]|0〉S. (13)

The elementsD(B)
j of A(B)S annihilate the vacuum vector, andsij , tj preserve|0〉S:

Dj |0〉S = 0 sij |0〉S = |0〉S tj |0〉S = |0〉S. (14)

We then define Cherednik-type commuting operators associated with (11):

D̂
(B)
j = xjD(B)

j + β
∑
k(<j)

(sjk + tj tksjk)

= xj ∂
∂xj
+ β

∑
k(<j)

{
xk

xj − xk (1− sjk)−
xk

xj + xk (1− tj tksjk)
}

+β
∑
k(>j)

{
xj

xj − xk (1− sjk)+
xj

xj + xk (1− tj tksjk)
}

+2β(j − 1)+ γ (1− tj ). (15)

We introduce the notation Res(t)(X) which means the action of the operatorX is restricted
to the functions with symmetrytj f (x) = f (x). Under this restriction, the action of the
operatorD̂(B)

j is reduced to the following form:

Res(t)(D̂(B)
j )=xj ∂

∂xj
+ 2β

∑
k(<j)

x2
k

x2
j − x2

k

(1− sjk)
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+2β
∑
k(>j)

x2
j

x2
j − x2

k

(1− sjk)+ 2β(j − 1). (16)

Comparing (16) with (6), we find that Res(t)(D̂
(B)
j ) is equivalent to 2̂D(A)

j if we make a

change of variableszj = x2
j /2. If we define the operator̂1(B)

S (u) as

1̂
(B)

S (u) =
N∏
j=1

(u+ D̂(B)
j ) (17)

we then have the following equation by using the correspondence between Res(t)(D̂
(B)
j ) and

2D̂(A)
j :

1̂
(B)

S (u)Jλ
(
x2

1/2, . . . , x
2
N/2

) = N∏
j=1

{
u+ 2λN−j+1+ 2β(j − 1)

}
Jλ
(
x2

1/2, . . . , x
2
N/2

)
. (18)

3. BN -type Calogero model

We now turn to theBN -type Calogero model. We introduce an analogue of creation and
annihilation operators [5]:

A
†
j =

1√
2
(−D(B)

j + xj ) Aj = 1√
2
(D

(B)
j + xj ). (19)

By a direct calculation, we can show that the operatorA
†
j is adjoint ofAj with respect to

the scalar product

(f, g)B =
∫ ∞
−∞

f (x1, . . . , xN)g(x1, . . . , xN)(φ
(B)

0 )2
N∏
j=1

dxj . (20)

We call an algebra generated byAj , A
†
j , sij and tj asA(B)C . Since the commutation

relations of these operators are the same as those ofxj and D(B)
j , we can define an

isomorphism ofA(B)S to A(B)C as follows:

σ(xj ) = A†j σ (D
(B)
j ) = Aj . (21)

The Fock space forA(B)C is constructed in the same way as forF (B)S :

F (B)C = C[(A†1)
2, . . . , (A

†
N)

2]|0〉C (22)

with |0〉C =
∏N
j=1 exp(−x2

j /2). The elementsAj of A(B)C annihilate the vacuum vector, and
sij , tj preserve|0〉C:

Aj |0〉C = 0 sij |0〉C = |0〉C tj |0〉C = |0〉C. (23)

Comparing (23) with (14), we know that the isomorphismσ can be extended to the
isomorphism of the Fock spaces:

σ(|0〉S) = |0〉C σ(a|v〉) = σ(a)σ (|v〉) (24)

for a ∈ A(B)S and |v〉 ∈ F (B)S .
Applying this isomorphism to (18), we obtain the following equation:

1̂
(B)

C (u)Jλ((A
†
1)

2/2, . . . , (A†N)
2/2)|0〉C
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=
N∏
j=1

{
u+ 2λN−j+1+ 2β(j − 1)

}
Jλ

(
(A
†
1)

2/2, . . . , (A†N)
2/2
)
|0〉C (25)

where we definê1(B)

C (u) as

1̂
(B)

C (u) = σ(1̂(B)

S (u)) =
N∏
j=1

(u+ ĥ(B)j ) (26)

with

ĥ
(B)
j = σ(D̂(B)

j ) = A†jAj + β
∑
k(<j)

(sjk + tj tksjk). (27)

We note that the operator̂h(B)j is self-adjoint with respect to (20). The transformed

Hamiltonian H̃B is related to (26) as follows; if we denote the(N − j)th coefficient of
1̂
(B)

C (u) asI (B)C,j , thenH̃B is obtained fromI (B)C,1 after restricting to theBN -invariant subspace:

Res(I (B)C,1 ) = Res

( N∑
j=1

ĥ
(B)
j

)
= H̃B − N

2
− γN. (28)

From (25) we find that all the eigenvalues of1̂(B)

C (u) are distinct. On the other hand,
the operator̂1(B)

C (u) is self-adjoint with respect to the scalar product (20). From these facts,
we conclude that the vectors

|λ〉 = Jλ((A†1)2/2, . . . , (A†N)2/2)|0〉C (29)

form an orthogonal basis with respect to the scalar product (20). We note that the polynomial
parts of the basis (29) are equivalent to the generalized Laguerre polynomials introduced
by Baker and Forrester up to a constant.

Baker and Forrester [7] also introduced ‘non-symmetric generalized Laguerre
polynomials’. In our formulation, such polynomials are related to joint eigenfunctions of the
operatorsĥ(B)j , which are of the formJ λw((A

†
1)

2/2, . . . , (A†N)
2/2)|0〉C. The non-symmetric

generalized Laguerre polynomials are polynomial parts of these eigenfunctions.
In conclusion, we have constructed an operator expression of the orthogonal basis for the

BN -type Calogero model by using Jack polynomials whose arguments are the Dunkl-type
creation and annihilation operators. We stress that our proof of orthogonality is algebraic
and does not make use of the limiting procedure.

Appendix

In this appendix we investigate the one-variable case in more detail to clarify the relationship
to the Laguerre polynomials.

ForN = 1 case, Hamiltonian (2) is reduced to

Ĥ = 1

2

{
− d2

dx2
+ x2+ γ (γ − 1)

x2

}
. (A1)

The ground-state wavefunction isψ0(x) = |x|γ exp(−x2/2), whose eigenvalue is 1/2+ γ
(we omit the normalization constant).

On the other hand, the creation and annihilation operators (19) are reduced to

A† = 1√
2

{
− d

dx
+ x − γ

x
(1− t̂ )

}
A = 1√

2

{
d

dx
+ x + γ

x
(1− t̂ )

}
(A2)
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wheret̂ is the reflection operator̂tf (x) = f (−x). The Hamiltonian (A1) and the operators
(A2) are related as follows:

Ĥ = |x|γ ◦ 1
2 Res(A†A+ AA†) ◦ |x|−γ

where ResX means that action of the operatorX is restricted to even functions.
Wavefunctions for excited states can be constructed by using a gauge-transformed

version of (A2), i.e.

Â† = |x|γ ◦ A† ◦ |x|−γ = 1√
2

(
− d

dx
+ x + γ

x
t̂

)
Â = |x|γ ◦ A ◦ |x|−γ = 1√

2

(
d

dx
+ x − γ

x
t̂

)
which obey the commutation relations

[Ĥ , Â†] = Â† [Ĥ , Â] = −Â. (A3)

It should be noted that these creation and annihilation operators have been introduced by
Yang [16].

To preserve the symmetryψ(x) = ψ(−x), we applyÂ† an even number of times to
the ground-state wavefunctionψ0(x):

ψ2n(x) = (Â†)2nψ0(x).

This formula is theN = 1 counterpart of (29). From (A3), it follows thatψ2n(x) are also
eigenfunctions ofĤ :

Ĥψ2n(x) = (2n+ 1/2)ψ2n(x). (A4)

The wavefunctionsψ2n(x) are expressed as a product of some polynomialsf2n(x) and the
ground-state wavefunctionψ0(x). Rewriting (A4), one can obtain the following differential
equation forf2n(x):

d2f2n

dx2
−
(

2x − 2γ

x

)
df2n

dx
+ 4nf2n = 0.

Making a change of variabley = x2, we obtain

y
d2f2n

dy2
+
(

1

2
+ γ − y

)
df2n

dy
+ nf2n = 0

which coincides with the differential equation for the Laguerre polynomials. Hence we
conclude thatf2n(x) can be written by using the Laguerre polynomials:

f2n(x) = n!(−2)nL(γ−1/2)
n (x2).

Sinceψ2n(x) are even functions, the operators(Â†)2 andÂ2 act equivalently to

B+ = Res((Â†)2) = 1

2

{
d2

dx2
− 2x

d

dx
+ x2− 1− γ (γ − 1)

x2

}
B− = Res(Â2) = 1

2

{
d2

dx2
+ 2x

d

dx
+ x2+ 1− γ (γ − 1)

x2

}
respectively. We remark that the operatorsB+ andB− have been introduced by Perelomov
[17].

The operatorsB+ andB− give the recursion relations for the wavefunctions

B+ψ2n = ψ2n+2 B−ψ2n = 4n(n− 1
2 + γ )ψ2n−2 (A5)



Letter to the Editor L541

where the constant factor of the second relation is determined by comparing the coefficient
of x2n−2ψ0(x). One can obtain recursion relations for the Laguerre polynomials by rewriting
(A5) [17]:{
y

d2

dy2
+
(

1

2
+ γ − 2y

)
d

dy
+ 2y − 1

2
− γ

}
L(γ−1/2)
n (y) = −(n+ 1)L(γ−1/2)

n+1 (y){
y

d2

dy2
+
(

1

2
+ γ

)
d

dy

}
L(γ−1/2)
n (y) = −

(
n− 1

2
+ γ

)
L
(γ−1/2)
n−1 (y).
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